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Improved lower bounds for the N-fermion problem 
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Hutt, New Zealand 

Received 21 November 1977 

Abstract. Lower bound energy formulae for the N-fermion problem of the type used by 
Hall and by Post are considered in terms of a reduced density operator for the interparticle 
separation. In bounds of this type the N-body energy is bounded below by a sum of 
eigen-energies of states of relative motion weighted by occupations for the relative states. 
It is shown that the wavefunctions of relative motion are subject to constraints and in 
particular must be zero when the particle separation is zero. This modifies the energy 
spectrum of the reduced Hamiltonian of relative motion and improves the lower bound 
due to Hall. The improvement is demonstrated for some simple model problems. 
Furthermore it is shown that the bounds of this type currently known do not exhibit 
saturation regardless of the interaction details. This leads to some speculation on 
improved lower bounds. 

1. Introduction 

Methods for finding the ground state energy of the N-fermion problem can be divided 
into three classes. First there are exact upper bound energies obtained by using 
suitable trial wavefunctions. For example, Hartree-Fock and Hartree-Fock-Bogo- 
liubov theories fall in this class, though the latter provides a strict upper bound only in 
the limit N + 03. Second is the large class of approximation methods which substitute 
some physical intuition for mathematical rigour. The majority of methods used in the 
many-body problem are of this type. The third class is that of strict lower bound 
energies. These can be obtained by partly relaxing the constraint that the wavefunc- 
tion be totally antisymmetric, and doing this in such a way as to reduce the problem to 
a solvable one. 

Lower bound results are important for several reasons. In the first place good 
lower bounds can be used to demonstrate stability properties. This is exemplified for 
atomic and molecular systems in an excellent review by Lieb (1976). It would be 
extremely useful to have comparable lower bounds for systems interacting with a wide 
range of forces, particularly in the limit N + m .  Such bounds might enable useful 
checks on nuclear matter calculations and define allowed ranges of parameters in 
nucleon interactions. Another important reason for pursuing exact lower bound 
results is that in doing so one is forced to explore the structure of general antisym- 
metric wavefunctions in detail. This leads to a refinement of our intuitive understand- 
ing of fermion systems which in turn can lead to better approximation methods. As an 
example the lower bound for atomic systems derived by Coleman (1963) in his study 
of reduced density matrices has led to a clearer understanding of the pair conden- 
sation phenomenon responsible for superconductivity (Coleman 1965). 
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For a system of N fermions with no external forces the centre of mass degree of 
freedom becomes redundant. This has a significant effect on the Coleman lower 
bound and reduces it to a bound derived earlier by Post (1956). The quality of the 
Post bound is known to depend significantly on the type of interaction but in all cases 
becomes poor as N increases. Various other lower bounds have been derived (e.g. 
Carr and Post 1968, 1971, Hall 1967) with a view to improving the behaviour for 
large N and in general the best of these is that of Hall. The Hall bound is not as good 
as that of Post for very small N but usually surpasses it at some intermediate N value 
depending on the interaction. 

In this work the various bounds of the Hall and Post type are derived in a unified 
way from a reduced density operator for the interparticle separation. It should be 
noted that the second Carr and Post bound cannot be derived in this way. 

The derivation here shows that additional constraints, not previously considered, 
can be imposed on the wavefunctions of the relative coordinate. In particular these 
wavefunctions must go to zero for zero particle separation and this leads to an 
improvement in the Hall bound. 

The improvement is demonstrated for some simple model problems in which it is 
shown that the modification to the Hall bound causes it to surpass the Post bound at 
lower N values. The behaviour of the Hall bound for large N is however not 
significantly changed. Furthermore, it is shown that none of these bounds exhibit 
saturation for interactions of the type occurring between molecules or nucleons. This 
leads to some discussion as to how the lower bounds must be improved to exhibit 
saturation. 

2. Preliminary definitions 

The internal energy for an interacting N-fermion system is given by the Hamiltonian 

N p :  N P 2  
H =  C -+ 1 u ( r ; - r , ) - -  

;=I  2m i < j=2  2"' 

where the particle momenta pi are conjugate to the coordinates ri, U is an arbitrary 
(momentum-independent) interaction potential, and P is the centre of mass 
momentum: 

N 
P =  pi. 

i = l  

For simplicity spins are not considered throughout this work although their inclusion 
is straightforward. 

The ground state energy is the global minimum value of 

E(*) = (*lHI*II) 

where * ( r l ,  . . . , rN) is a normalised wavefunction antisymmetric in all the coordinates 
r;. 

The internal energy Hamiltonian can be re-arranged as 
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and using the symmetry of the wavefunction we can write a variety of equivalent 
expressions for the energy, e.g. 

Following Hall we define a set of coordinates p l ,  p 2 ,  . . . , p~ separating the centre 
of mass and at least one relative coordinate. Thus 

N 
p i  = 1 B,.r, 11 I 

j = l  

where particularly 

and p 3 ,  . . . , p N  are left undetermined at this stage although they are orthogonal to p l .  
The momenta conjugate to the p i  are 

the first of these being already determined as 
N 

j = 1  
r 1  = P = 1 p; .  

The momentum conjugate to the interparticle separation p 2  will be written as 
N 

r 2  = C pip;, 
j =  1 

and the coefficients pi must satisfy 
N 

j = l  
1 p;=o.  

Relative to its rest frame T is independent of p l .  Thus we can write 

q ( r 1 ,  * * 9 r N ) = @ ’ ( p 2 , .  * .  9 P N )  

where CP can be taken as normalised in the internal coordinates. The ground state 
energy is now given by the minimum value of 

CP being restricted to a set of wavefunctions such that the corresponding V is totally 
antisymmetric. 

As shown by Hall the energy can be given entirely in terms of p 2  and r2  by noting 
that 
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where again use has been made of the symmetry between the particles. Defining 

and so 

E(*) = (N - 1 )( @ I + $Nu (p2) I @). 2mA (4) 

The reduced mass factor A depends on the transformation matrix B and has a 
minimum value of $ when p3, . . . , pN are all orthogonal to p2. Note that as Hall uses a 
different normalisation for the relative coordinate his A is twice ours. 

We will write 

and refer to this as the reduced Hamiltonian. In cases of interest it will have discrete 
bound eigenstates 4i satisfying 

K(A )I4 (A )) = Ei (A )I4i (A 1). (5  1 
Note that each of the energy eigenvalues ei(A ) decreases monotonically as A 

increases as ,ri is a positive operator. 

3. The reduced density operator for the relative coordinate 

In order to reduce the expression for the energy still further, it is necessary to consider 
resolutions of Q, of the form 

where f i  and gi are separately normalised. A theorem due to Schmidt (see Coleman 
1963) shows that the most rapidly convergent such series expansion is obtained by 
taking the fi as eigenstates of the integral operator with kernel 

D(p2, p i ) =  (N-1) J d ~ 3  * - dPNQbZP3.. PN)@*b$3 - PN). 

This operator, denoted simply by D, will be called the reduced density operator for 
the relative coordinate p2. It can be shown to be a Hermitian, positive, bounded 
operator and therefore has eigenstates fi satisfying 

Dlfi>=yilfi>, 

all the yi being real and positive. We have chosen D to be normalised so that 
m 

i = O  
Tr(D)= 1 yi =N-1 

for convenience below. 
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The optimally convergent series (6 )  is now obtained by taking the states f i  in order 
of decreasing yi. For each f i  the corresponding co-factor gi and coefficient ci is 
determined by 

c ig ib3 ,  * * 2 P N ) =  I d~2f ib2 )@b2 ,  ~ 3 9  * * * 9 P N ) ,  

and it should be noted that these co-factors are themselves orthogonal. The 
coefficients ci are simply related to the y i  by 

~i = (N  - l)lc,12. 

and the yi can be regarded as occupation probabilities of the various relative states f i e  

It must be made quite clear at this stage that the operator D as defined above 
depends on the definition of the internal coordinates p3, . . . , p N .  For two distinct B 
matrices defining different sets of internal coordinates (2) there appears in general to 
be no simple relation between the corresponding reduced density operators. On the 
other hand, if the two sets are such that one can be obtained from the other simply by 
a transformation of the form 

N 

bi = 1 R. .  IPf . ; i = 3 , .  . . , N 
j = 3  

which does not involve p2 then it can be shown that the D operators are in fact the 
same (the Jacobian IRI cancels as we require CP to be normalised in both cases). This 
result can be expressed more succinctly by saying that D only depends on the 
coefficients P i  which define rr2. 

The energy (4) can now be written in terms of D as 

The problem of finding the ground state energy is therefore equivalent to minimising 
the right-hand side of ( 7 )  subject to the constraint of antisymmetry in the original 
wavefunction. This identifies a ‘representability problem’ similar to that studied by 
Coleman and others for the reduced density operators for particle coordinates ri. 
Explicitly, we would like to know a necessary and sufficient set of conditions on the yi 
and fi which would ensure that they can arise from a totally antisymmetric N-fermion 
wavefunction v. 

In the absence of a sufficient set of constraints for the yi and fi, a lower bound 
energy can still be obtained by minimising ( 7 )  subject to any known necessary 
constraints. For a complex system of constraints such a minimisation could pose an 
insoluble problem in itself. However, the result is straightforward for constraints of 
the following type 

Yi Q 4 f i E M  

where 4 is an upper bound for any relative state occupation and M is a linear subspace 
of allowed relative states f i .  Both q and M might depend on N. 

The lower bound energy is obtained under these conditions by identifying the 
eigenstates f i  of D with those of the reduced Hamiltonian restricted to the subspace 
M. If P is the projection operator onto this subspace we have 

I‘K (A )Pki  ) = 6 (A ) Ix~ >. (8) 
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Numbering the states so that the ti are non-decreasing the lower bound energy is 

i = O  

where the first p states have the maximum occupation 4 and p is determined as the 
largest integer satisfying 

p q  S N - 1. 

The overflow into the last occupied state is 

CY = N - 1 - p q .  

It has been assumed here that there are at least (p + 1) bound states. If this is not 
the case, the lower bound is obtained by giving the maximal occupation to all the 
bound states. The total occupation is made up to ( N  - 1) by filling states fi in the 
continuum which can be chosen to contribute negligibly to the energy. Thus p in (9) 
becomes the number of bound states and CY becomes zero. Although the density 
operator D associated with such a lower bound describes an unbound N-body state 
(the probability of large particle separation does not go to zero) it cannot be assumed 
that the exact ground state solution has this character. 

4. Specific lower bound formulae 

If the coordinates p3, . . . , pN are all chosen to be symmetric in rl  and r2 it is clear that 
the relative states f i ( p 2 )  must carry the antisymmetry between r l  and r2.  This implies 
that P becomes the projection operator onto the space of odd functions. Further- 
more, the momentum conjugate to p 2  is just 

7 T 2 = + @ 2 - P * )  

and so 
= L  2 .  

This value of A maximises the eigenvalues &(A) and only those corresponding to odd 
states can occur in the lower bound (9). Unfortunately, the best upper bound q for the 
occupations currently known in this case is the trivial one 

yi S N - 1. 

The lower bound energy that results is 

ELI = ( N  - l)to(i) (10) 

SO($) here being the lowest eigenvalue of K($) corresponding to an odd state. This 
lower bound result is due originally to Post (1956) and, as has already been pointed 
out, the Coleman (1963) bound reduces to this in the absence of external forces. 

Another choice for the coordinates p 3 , .  . . , pN is 

pi = ri - r l ,  i = 3, . . . , N, 
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for which we can derive 

N-1  A=-  
N '  

With this set of coordinates @'(p2,  . . . , p N )  must be antisymmetric in the p i  because of 
the antisymmetry of 9 in r 2 , .  . . , rN. Therefore, @ has the characteristics of an 
( N  - 1)-fermion state and in particular 

yi 4 1. (1 1) 
Ignoring any constraints on the relative siates f i ,  we have immediately a second lower 
bound 

being the sum over the N - 1 lowest eigenvalues of K ( ( N  - l ) / N ) .  Because the q ( A )  
decrease as A increases, it is apparent that 

is also a lower bound energy and this is in fact the first Carr and Post (1968) bound. 
Hall (1967) showed that the value of A can be decreased to 3 by suitable choice of 

the coordinates pi while still retaining the occupation upper bound (1 1). Specifically 
the occupation upper bound (1 1) can be derived provided 

p 3  = r3 - rl 

and p4, . . . , p N  are ail symmetric in r l ,  r2 and r3 .  Under these conditions the minimum 
value of A turns out to be 3 and thus we have the Hall lower bound 

i = O  

Obviously, Hall's bound (14) is equivalent to (12) for N = 3 and is superior for N > 3. 
It is superior to the Carr and Post bound (13) for all N. 

These last three bounds have all ignored the possibility that the f i  states might be 
constrained to some subspace. In fact there is one such constraint that can be applied 
in all three cases. Because Q(p2, .  . . , p N )  must vanish whenever p 2  = 0 ( r l  = r2) it 
follows that 

c i f i ( P 2 ) ~  J dp3 .  dpNgib3, 9 PN)*@'(p29 ~ 3 9  9 P N )  

must also vanish. Consequently, all the occupied fi must satisfy: 

f i (0)  = 0. 

The odd eigenstates of (5) already satisfy this constraint, but provided the interaction 
is non-singular at the origin there will be S-state solutions in three dimensions and 
even state solutions in one dimension which violate it. By solving the projected 
problem (9), we find an upward shift in the eigenvalues ei for these solutions and a 
consequent improvement in the lower bound. This effect is considered in detail in the 
next section. 
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5. Solutions of the constrained eigenproblem 

In order to solve the constrained problem (8), it is convenient to regard the constraint 
introduced in the last section as an orthogonality condition. In fact the allowed 
wavefunctions must be orthogonal to the 6 function as 

( S l f ) = j  dp6bI fb )=f (O)=O.  

The projection operator P in (8) projects onto the subspace orthogonal to IS). Now i f f  
is an eigenstate of the projected reduced Hamiltonian it must satisfy 

P(K - ( ) I f )  = 0 

(K - 511 f) = CL IS ) 

(K-5)1f)=O 

or equivalently 

for some p. The solutions f to (15) fall into two classes. If p = 0, we have 

and by definition f satisfies the constraint 

@ I f )  = 0.  

Such solutions are just those solutions of the unconstrained problem which satisfy the 
constraint coincidentally. If p f 0 we can extract the equation 

@\(K - I $ ) - l I S )  = 0 (16) 

I fi) = pi (K - ti )-'I 8) 

for 5. For each Ti satisfying this equation, the solution f i  is given by 

where pi is now seen to be a normalisation factor. From what has been said the fj 
obtained this way must all be orthogonal to one another and orthogonal to the p = 0 
solutions. This result could also be derived directly. 

Equation (16) for 5 can be written as 

from which it can be seen that the solutions I$ are sandwiched between the poles of the 
left-hand side. These poles are just the eigenvalues corresponding to unconstrained 
solutions of (5) which violate the constraint. 

For the model problems to be considered below the q$(O) are all known and (17) 
can be used to evaluate the energies 6. However, for a general interaction U this 
approach is not possible and (15) must be solved directly. 

6. The improved bounds for some model problems 

The first model problem we consider is that of N fermions in one dimension interac- 
ting with harmonic forces. This problem has been discussed by Post and Hall for the 
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earlier bounds and the exact solution is known (Post 1953). The interaction is 

v ( X i  - x i )  = k 2 ( X i  - X j ) Z  

and the unconstrained reduced Hamiltonian problem is 

The solutions of this are well known as 

ei = (2i + l)e(A) 

where 

The odd states (i odd) satisfy the constraint 

whereas the even ones do not and their eigen-energies become shifted. The con- 
strained energies can be obtained using 

Introducing the dimensionless energy variable 

the equation for v is 

OC 1 . 3  . . . (  2i-1) 1 
S ( v ) =  = 0. 

i=o 2 . 4  . . . (  2i) 4 i - t l - v  

The ratio of successive terms in this series, for large i becomes 

-= tic1 1 - 2 + 0 ( $ ) ,  2i 
ti 

and so by Raabes test (Ferrar 1938) the series converges even though it does so very 
slowly. Fortunately the series can be expressed in terms of the r function after noting 
that 

1 

d x x - w ( l  - x ) - ' / '  

OD 1 . 3  . . . (  2i-1) 1 
i = o  2 . 4  . . . (  2 i )  i + l - p  = c  

= r($)r(i  -p)/r($-p).  
For p 7 1 this relation still holds using 
function (Copson 1935). It follows that 

the standard analytic continuation of the r 
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The zeros of S ( v )  are given by the poles of the denominator on the right-hand side and 
we have immediately: 

ti = (42' + 3)e(A). 

The constraint therefore shifts each even state energy by 2e to become degenerate 
with the next odd state. 

Figure 1 shows the resulting modified Hall bound as a function of N and compares 
it with the other lower bounds and the exact result. 

I *  

Figure 1. The Post (P), Hall (H) and modified Hall (MH) lower bound energies, for the 
one-dimensional harmonic force problem, compared with the exact energy (E) as a 
function of N, the number of fermions. The energy is given in units of e(+) defined by 
equation (18). 

The second model problem we consider is that of N fermions in three dimensions 
interacting with harmonic forces. The interaction is 

2 2 v (ri - rj )  = k (Ti - rj)  

and the treatment of this closely parallels that of the one-dimensional case above. 
The unconstrained eigenvalues for the reduced Hamiltonian are 

e,lm = (4n +21+3)e(A) 

where 

Only the S-states (1 = 0) violate the constraint and the corresponding constrained 
energies 6 must satisfy 

-Y = t / e O  >, 
O0 3 . 5 . . . ( 2 n + l )  1 

= 0. s(")=,,% 2 . 4 . .  . ( 2 n )  4n  + 3 - v  
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The infinite series can be treated similarly to that in the one-dimensional case and the 
equation for U becomes 

- 
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N 

Figure 2. The Post (P), Hall (H) and modified Hall (MH) lower bound energies, for the 
three-dimensional harmonic force problem, compared with the exact energy ( E )  as a 
function of N, the number of fermions. The energy is given in units of e(+)  defined by 
equation (19). 

The third model problem we shall consider is the rather more realistic one of an 
attractive ‘gravitational’ force in three dimensions. In this case the exact result is not 
known but a comparison of the various lower bounds is still of interest. 

The interaction potential is 

and the unconstrained reduced Hamiltonian is equivalent to that of the hydrogen 
atom. 

The unconstrained energies are therefore 

4)  
(n + I + 1)” Enlm = - 

where the energy scale is now 

AmNZk2 
8h2 * 

e @ )  = 
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Once again the constraint that the wavefunction go to zero at zero particle 
separation affects only the S-states. To evaluate the shifted energies for these states 
we use (17) and 

It is convenient now to introduce the dimensionless variable p so 

5 =  -e(A)lCL2 
and the equation for p becomes 

The author has been unable to find any useful expression for this series compar- 
able to the two previous cases. However, this series is rapidly convergent and it is 
quite easy to solve the last equation numerically. It should be noted that neglected 
terms in the series can be bracketed by the inequalities 

dx 1 
(n +1)3-p2(n +1)  

where 

Using this result the maximum error in the numerical solution can be carefully 
controlled. We have obtained the following values for the first four roots: 

p = 1,691, 2,751, 3,780, 4.799 
or 

5 = 0*350e(A), 0.132e(A), 0.070e(h), 0*043e(h). 

Figure 3 shows the resulting modification to the Hall bound and gives the Post 
bound for comparison. 

7. Behaviour of the lower bounds as N + 00 

In the case of the harmonic interaction problems for one or three dimensions dis- 
cussed above, the lower bound energy behaves asymptotically as N2. The exact 
energy which is known in this case also behaves asymptotically as N2. For the 
gravitational problem the lower bound energy collapses as N7l3 and in this case an 
upper bound has been derived (Levy-Leblond 1969) which also collapses as N7’3. 
Thus it is heartening to observe that the lower bound gives the correct power law 
behaviour for these non-saturating cases. However, the lower bound formulae 
developed so far unfortunately do not give the correct asymptotic behaviour for 
saturating potentials (for which the exact energy goes as N ) .  

To demonstrate this point we consider a potential with a finite negative part, the 
minimum (negative) value being Vmin. Given a suitable repulsive core we can expect 
the N-fermion ground state energy to be proportional to N for large N. The 
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Figure 3. The Post (P), Hall (H) and modified Hall (MH) lower bound energies, for the 
attractive gravitational force, as a function of N, the number of fermions. The energy is 
given in units of e($) defined by equation (20). 

eigenvalues of ( 5 )  will now be written as e i (N)  to emphasise their dependence on N. It 
is obvious that the ei(N) decrease monotonically as N increases, but the rate of 
decrease is bounded below by 

fNVmin<  ei(N). 

Furthermore, it follows from the work of Martin (1972) that for any 

e > Vmin 

the number of eigenvalues less than 4Ne, i.e., satisfying 

$NVmin < ei ( N )  C Ne 

increases asymptotically as N3'*. As a corollary of this the Nth  eigenvalue must 
satisfy 

e N ( N )  C $Ne 

for N sufficiently large. Thus, in the large-N limit the lower bound 

consists of N terms all approaching 5 NVmin whence 

E~ - 4 ~ '  vmin. 
The author believes that this result also holds for (8) when the relative wave- 

functions are subject to some general constraint. It certainly holds for the specific 
constraint 

4i (0) = 0 

which was considered in detail above. 
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This analysis shows that the lower bounds for fermion systems do not exhibit 
saturation even though the interaction may have an infinite hard core and require 
saturation classically on simple geometrical grounds. Clearly the constraints that have 
been imposed on the reduced density operator D so far are still seriously deficient for 
large N. 

The nature of this deficiency can be seen in more detail by considering the 
behaviour of the correlation function for the lower bound system. For any choice (2) 
of coordinates the correlation function is proportional to the diagonal part 

D b z ,  P 2 )  

of the reduced density operator. The constant of proportionality depends on the 
normalisation chosen for the correlation function and need not concern us. For the 
lower bound system 

and from the analysis above the wavefunctions di  are confined around the minimum 
of the potential V(p2) as N + CO. The resulting correlation function is small except in 
the neighbourhood of this minimum. The picture emerges then of one particle at the 
centre of a sphere on which the remaining N - 1 particles are held by the interaction 
with the first. Antisymmetry has been imposed on the N - 1 particles, but does not 
extend to the particle at the centre. Removing this antisymmetrisation constraint, 
which was necessary to obtain a soluble problem, has removed the effect of the 
interaction between the N - 1 particles and thus allowed the collapse. 

Having identified the nature of the problem in this way the question arises as to 
how the reduced density operator D can be further constrained to prevent the 
collapse. In terms of the occupations yi of the relative states, it is clear that the 
number of occupied states must increase at least as fast as N3”.  This question of 
additional constraints on D will be taken up in a subsequent paper. 

8. Conclusion 

It has been shown that currently known lower bound energies for many-fermion 
systems can be viewed in a unified way using the reduced density operator D for the 
interparticle separation. Furthermore, there is a range of possibilities for D asso- 
ciated with the freedom of choice in the internaLcoordinates. 

Lower bound energies are obtained simply from partial solutions of the represen- 
tability problem for D. In fact the quality of the lower bound result can be taken as a 
useful measure of how close we are to the full solution of the representability problem. 

The freedom of choice in the internal coordinates also affects the reduced 
Hamiltonian K and the constraints on D which make up a partial solution of the 
representability problem. It has been seen that no single choice for D gives the best 
lower bound for all N. Here we have finally used two choices, corresponding to the 
Post and modified Hall bounds, after discarding others which gave inferior bounds. 
Whereas Hall (1967) has discussed an ‘optimum’ choice for the internal coordinates it 
must now be realised that this was done in the context of a particular partial solution 
to the representability problem. With the simple improvement to the solution of the 
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representability problem introduced above Hall’s internal coordinates are still opti- 
mal. However, there is no guarantee that they will remain so for subsequent 
improvements. Indeed this is already demonstrated by the Post bound which exploits 
an alternative partial solution of the representability problem and produces a better 
lower bound for small N. 

Apart from the small-N limit the modified Hall bound presented here is the best 
such lower bound for general fermion interactions. It should be noted here that we 
are not comparing with bounds of the type described by Balbutsev er a1 (1976) which 
depend on a knowledge of solutions for the few (>2)-body problem. Despite the fact 
that this is the best known lower bound it is not able to exhibit saturation for the type 
of interactions occurring between molecules or nucleons. To obtain saturating lower 
bounds further understanding must be gained of the constraints on the relative 
coordinate reduced density operator which must hold for many-particle systems. 
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